Лекция 1. Введение в квантовую химию Курс: Молекулярное моделирование

Головин А.В.¹

¹НТУ Сириус

Сириус, 2022

Квантовая химия

Квантовая химия это применение квантовой механики для исследования химических проблем.

- Экспериментальная квантовая химия связана со спектроскопией (IR,NMR)
- Теоретическая квантовая химия это исследование электронной структуры системы вычислительными методами.
- Т.е. решение уравнения Шредингера для молекулярной системы. Использование термина Abinitio не предполагает использование экспериментальных данных, только основные физические константы.

Энергия и вещество

Размер частицы	Свойство частицы	Свойство волны
Крупный (ядро)	В основном	Не наблюдается
Средний (электрон)	Частично	Частично
Малый (фонон)	Не много	В основном

Итак:

• Соотношение де Бройля

$$p = \frac{h}{\lambda}$$

Волна де Бройля

$$f = Ae^{ikx}$$

Волновая функция

- Каждое состояние системы п-частиц и её эволюция во времени полностью описывается комплексной функцией координат частиц x_i и времени t, Ψ(x₁, x₂, ..., x_n, t)
- Выражение $\Psi^*(\{x\},t)\Psi(\{x\},t)dx_i$ имеет смысл вероятности того, что в момент t частица i находится интервале $x_i, x_i + dx_i$

{x} совокупность координат частиц

Волновая функция

Wikipedia * : Волновая функция — комплекснозначная функция, используемая для описания чистого квантового состояния системы. Обычно функция имеет комплексные значения, а для одной частицы это функция пространства и времени. Изменение волновой функции сравнимо с поведением волны.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Раздел:

Волновая функция:

Траектории гармонического осцилятора:

- В классической механике А-В.
- В квантовой механике С-Н, реальная часть волновой функции шарика показана синим, красным показана комплексная часть.
- С-F это примеры стационарного состояния.

Уравнение Шредингера

Вариант движения электрона (вектор г) с учётом времени в присутствии внешнего электрического поля V. Это не релятивистский вариант для одной частицы.

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \begin{bmatrix} -\hbar^2 \\ 2m \nabla^2 + V(\mathbf{r},t) \end{bmatrix} \Psi(\mathbf{r},t); \quad \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

 \hbar -постоянная планка; Ψ -волновая функция.

Если V не изменяется со временем то для частицы с энергией E :

$$\Psi(r,t) = \psi(r)T(t)$$
$$\left[\frac{-\hbar^2}{2m}\nabla^2 + V\right]\Psi(r) = E\Psi(r)$$

Уравнение Шредингера

Итак обзовем оператором Н (Гамильтониан):

$$H = \frac{-\hbar^2}{2m}\nabla^2 + V$$

тогда :

$H\Psi = E\Psi$

Для решения этого уравнения надо найти значения E и волновую функцию так, что бы уравнение выполнялось.

Это уравнение относится к типу дифференциальных уравнений с собственными значениями, где оператор действующий на функцию возвращает произведение скалярной величины на функцию.

$$\frac{d}{dx}(y) = ry; \quad if \quad y = e^{ax} \quad then: \quad r = a$$

Операторы

Ожидаемое значение (можно рассматривать как среднее значение) какого либо свойства: энергии, положения, линейного момента, можно определить с помощью оператора. **Пример:** гамильтониан это оператор для энергии можно сказать, что задав волновую функцию:

$$E = \frac{\int \dot{\Psi} H \Psi \partial r}{\int \dot{\Psi} \Psi \partial r}$$

Надо учитывать, что волновая может быть сложным числом и поэтому комплексная составляющая указывается явно.

$$w = \frac{dP}{dV} = |\Psi(x_1, x_2 \dots)|^2$$

Атомные единицы

Работая с квантовой механикой мы оперируем частицами и если выражать для них энергию или массу в системе Си, то придётся ворочать значениями 10-¹⁰, упростили:

- 1 Au, mass
- 1 Au, charge
- 1 Hartree, energy
- 1 Bohr, length

- 9.1093826(16)×10-31
- $1.60217653(14) \times 10-19$
- 4.35974417(75)×10-18
- 5.291772108(18)×10-11

Одно-электронный атом

 $H = \frac{-\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{4\pi\epsilon_0 r}$ или в упрощенных единицах: $H = \frac{1}{2} \nabla^2 - \frac{Z}{r}$ Так как система имеет сферическую симметрию, то можно представить волновую функцию в сферических координатах.

$$\left(-\frac{\hbar^2}{2}\nabla^2 - \frac{Ze^2}{4\pi\epsilon_0 r}\right)\psi(r,\theta,\psi) = E\psi(r,\theta,\psi)$$

расскроем оператор Лапласа:

$$\frac{\hbar^2}{2} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right] - \frac{Z e^2}{4\pi\epsilon_0 r} \psi = E \psi$$

Одно-электронный атом

разделив переменные : $\Psi(r,\theta,\phi)=R(r)Y(\theta,phi)$

$$\left[\frac{\hbar^2}{2}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) - \frac{Ze^2}{4\pi\epsilon_0 r}\right]R(r) = \lambda R(r)$$

$$\frac{\hbar^2}{2} \left[\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} \right] Y(\theta, \phi) = -\lambda Y(\theta, \phi)$$

Накладывая стандартные условия (периодичность и нормировку), переходим к следующему слайду

Раздел:

Одно-электронный атом водорода Итак решения :

• Радиальная функция

$$R_{n,l}(r) = R_{\infty}(r)b_0 \exp\left(\frac{\mu Z e^2 r}{2\pi\epsilon_0 \hbar^2 n}\right)$$

Зенитиная часть

$$P_l^m = (1 - x^2)^{\frac{m}{2}} \left(a_0 \sum_{n=0}^{\infty} \frac{a_{2n}}{a_0} x^{2n} + a_1 \sum_{n=1}^{\infty} \frac{a_{2n+1}}{a_1} x^{2n+1} \right)$$

где

$$a_{n+2} = \frac{(n+m)(n+m+1) - A}{(n+1)(n+2)}a_n$$

Азимутальная часть

$$\Phi_m(\phi) = c_1 \mathrm{e}^{\mathrm{i}m\phi}$$

.

Одно-электронный атом водорода

$$\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-\rho/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) Y_\ell^m(\vartheta,\varphi);$$

 $L^{2\ell+1}_{n-\ell-1}(\rho)$ - Обобщённый полином Лагерра степени n-l-1 ; $\rho=\frac{2r}{na_0}$ $Y^m_\ell(\vartheta,\varphi)$ - Сферическая гармоника ;

Где n,l,m это основные квантовые числа

- п- основное число (1,2,3..)
- l орбитальное число (0,1,2.. n-1)
- m магнитное число (-l..+l)

Одно-электронный атом, волновые функции

Π	ι	m	функция
1	0	0	$\frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$
2	0	0	$\frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$
2	1	0	$\frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \frac{r}{a_0} e^{-r/2a_0} \cos\theta$
2	1	-1;1	$\frac{1}{8}\sqrt{\frac{1}{\pi}}\left(\frac{1}{a_0}\right)^{3/2}\frac{r}{a_0}e^{-r/2a_0}\sin\theta e^{\pm i\phi}$

Раздел:

Волновые функции, python

In [1]:	import numpy import scipy.special import scipy.ests	1-0-0	2-0-0	
	free suyui lagari silal free suyui lagari officreeningine free Tython.display lagari display, Tasge		\bigcirc	
In [19]:	<pre>stands s,y_c::mapy.uet[(**2y**2x*2]) thts : lands s,y_c::mapy.uet[(**2y**2x*2]) thts : lands s,y_c::mapy.uets((*/cy,z)) so :lands s,y_c::mapy.uets((*/cy,</pre>	24-4	3.0.0	31-0
	$\begin{split} & (a) = z \cdot m_{i} (z_{i}, z_{i}) \left\{ b_{i}, z_{i} \in b_{i} \left\{ c_{i}, c$	3-1-1	3-20	324
	2 3 3 4 3 5 3 5 3 5 3 5 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7			

Раздел:

Одно-электронный атом

Тут есть красивая анимация которая на примере поверхности барабана объяснит откуда берутся такие формы. http://en.wikipedia.org/wiki/Atomic_orbital

Многоэлектронный атом

Полное решение уравнение Шредингера для многоэлектронного атома затруднено, по ряду причин:

- N-body problem, суть вопроса, предсказать движение трёх и более тел на всём течении времени, если известны положение и скорости на текущий момент.
- Добавление четвёртого экспериментального квантового числа, спина, создаёт необходимость различать электроны.
- Квадрат волновой функции равен плотности. Трактование волновой функции как плотности электрона в данном месте, означает, что плотность может быть образована любым электроном. Этот факт сильно затрудняет расчёты.

Приближение Борна-Оппергеймера

Если мы считаем, что ядра двигаются сильно медленнее чем

1

электроны, то мы можем считать

$$\Psi_{total} = \psi_{electronic}\psi_{nucleic}$$
$$E_{total} = E_{electronic} + E_{nucleic}$$

1

Google: electron mass = $9.10938188 \times 10^{-31} kg$ proton mass = $1.67262158 \times 10^{-27} kg$

Атом гелия

$$(H_1 + H_2)\Psi(r_1, r_2) = E\Psi(r_1, r_2)$$

Спин орбиталь это: $\chi_i(x_i) = \chi_i(r_i)\sigma(s_i)$

Давайте запишем волновую функцию электрона на самой низкой орбитали как:

$$\chi_1(x_1)\chi_2(x_2); \chi_1(x_2)\chi_2(x_1)$$

тогда: $\Psi = \frac{1}{\sqrt{2}} [\chi_1(x_1)\chi_2(x_2) - \chi_1(x_2)\chi_2(x_1)]$ но $\Psi = \frac{1}{\sqrt{2}} [\chi_1(x_1)\chi_1(x_2) - \chi_1(x_2)\chi_1(x_1)] = 0$

Вот он принцип Паули и матричное описание:

$$\Psi = \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_1(x_1) & \chi_2(x_1) \\ \chi_1(x_2) & \chi_2(x_2) \end{vmatrix}$$

Расчёт энергии для молекулы водорода

Воспользуемся теорией молекулярных орбиталей и будем считать, что каждая молекулярная орбиталь есть линейная комбинация атомных орбиталей:

$$\psi_i = \sum_{\mu=1} K c_{\mu i} \phi_\mu$$

Линейная комбинация двух 1
s орбиталей: $1\sigma_g = A(1s_A + 1s_B)$, где А это коофицент нормализации.

$$\Psi = \begin{vmatrix} \chi_1(1) & \chi_2(1) \\ \chi_1(2) & \chi_2(2) \end{vmatrix}$$

Где $\chi 1(1) = 1\sigma_g(1) lpha(1)$ и т.д.

Расчёт энергии для молекулы водорода

Подставляем матрицу полученную выше в гамильтониан:

$$H = -\frac{1}{2}\nabla_1^2 - \frac{1}{2}\nabla_2^2 - \frac{Z_A}{r_{1A}} - \frac{Z_B}{r_{1B}} - \frac{Z_A}{r_{2B}} - \frac{Z_B}{r_{2A}} + \frac{1}{r_{12}}$$
$$E = \frac{\int \dot{\Psi} H \Psi \partial r}{\int \dot{\Psi} \Psi \partial r}$$

1

$$E = 1/2 \int \int \partial \tau_1 \tau_2 ([\chi_1(1)\chi_2(2) - \chi_2(1)\chi_1(2)] \\ [-1/2\nabla_1^2 - 1/2\nabla_2^2 - \frac{1}{r_{1A}} - \frac{1}{r_{1B}} - \frac{1}{r_{2A}} - \frac{1}{r_{2B}} + \frac{1}{r_{12}}] \\ [\chi_1(1)\chi_2(2) - \chi_2(1)\chi_1(2)])$$

Разделим на компоненты

$$E_{ij}^{core} = \int \partial \tau_1 \chi_i(1) (-\frac{1}{2} \nabla_i^2 - \sum_{A=1}^M \frac{Z_A}{r_{iA}}) \chi_j(1)$$

Для мультиэлектронной системы кинетическая и потенциальная энергия:

$$E_{total}^{core} = \sum_{i=1}^{N} N \int \partial \tau_1 \chi_i(1) (-\frac{1}{2} \nabla_i^2 - \sum_{A=1}^{M} \frac{Z_A}{r_{iA}}) \chi_j(1) = \sum_{i=1}^{N} H_{ij}^{core}$$

Электростатическое отталкивание электронов:

$$E_{ij}^{Coulomb} = \int \int \partial \tau_1 \partial \tau_2 \chi_i(1) \chi_j(1) \frac{1}{r_{12}} \chi_i(2) \chi_j(2)$$
$$E_{total}^{Coulomb} = \sum_{i=1}^N \sum_{j=i+1}^N \int \int \partial \tau_1 \partial \tau_2 \chi_i(1) \chi_j(1) \frac{1}{r_{12}} \chi_i(2) \chi_j(2) = \sum_{i=1}^N \sum_{j=i+1}^N J_{ij}$$

Особенность квантовой природы электрона

Два электрона с одинаковыми спинами в рамках принятой модели имеют поправку к электростатическому отталкиванию делая его менее значимым:

$$K_{ij} = \int \int \partial \tau_1 \partial \tau_2 \chi_i(1) \chi_j(2) \frac{1}{r_{12}} \chi_i(2) \chi_j(1)$$

$$E_i^{exchange} = \sum_{j <>i}^N \int \int \partial \tau_1 \partial \tau_2 \chi_i(1) \chi_j(2) \frac{1}{r_{12}} \chi_i(2) \chi_j(1)$$

$$E_{total}^{exchange} = \sum_{i=1}^N \sum_{j'=i+1}^N \int \int \partial \tau_1 \partial \tau_2 \chi_i(1) \chi_j(2) \frac{1}{r_{12}} \chi_i(2) \chi_j(1) = \sum_{i=1}^N \sum_{j'=i+1}^N K_{ij}$$

Интеграл K_{ij} не ноль, только при одинаковом спине электронов.

Упрощенные записи

Общая энергия:

$$E = \int_{\infty}^{\infty} \Psi^*(x) \boldsymbol{H} \Psi(x) \partial x \equiv \langle \Psi | \boldsymbol{H} | \Psi \rangle$$

Кулоновское отталкивание:

$$J_{ij} = \langle \chi_i \chi_j | \frac{1}{r_{12}} | \chi_i \chi_j \rangle$$

Забавно, что exchange интегралы сокращают до:

$$K_{ij} = \langle \chi_i \chi_j | \frac{1}{r_{12}} | \chi_j \chi_i \rangle$$

Итак, энергия: Для не возбуждённых состояний или closed shell:

Существует четыре способа: как электроны с одной орбитали взаимодействуют с электронами с другой орбитали и есть всего два способа получить спаренные электроны и:

$$E = 2\sum_{i=1}^{N/2} 2H_{ii}^{core} + \sum_{i=1}^{N/2} \sum_{j=i+1}^{N/2} (4J_{ij} - 2K_{ij}) + \sum_{i=1}^{N/2} J_{ii}$$

Или если примем $J_{ii} = K_{ii}$

$$E = 2\sum_{i=1}^{N/2} 2H_{ii}^{core} + \sum_{i=1}^{N/2} \sum_{j=i+1}^{N/2} (J_{ij} - K_{ij})$$

Лекция 1. Введение в квантовую химию Курс: Молекулярное моделирование

Головин А.В.¹

¹НТУ Сириус

Сириус, 2022

Волновая функция

Wikipedia * : Волновая функция — комплекснозначная функция, используемая для описания чистого квантового состояния системы. Обычно функция имеет комплексные значения, а для одной частицы это функция пространства и времени. Изменение волновой функции сравнимо с поведением волны.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении. Раздел:

Уравнение Шредингера

Итак обзовем оператором Н (Гамильтониан):

$$H = \frac{-\hbar^2}{2m}\nabla^2 + V$$

тогда :

$$H\Psi = E\Psi$$

Для решения этого уравнения надо найти значения E и волновой функции. Это уравнение относится к типу дифференциальных уравнений с собственными значениями, где оператор действующий на функцию возвращает произведение скалярной величины на функцию.

Приближение Борна-Оппергеймера

Если мы считаем, что ядра двигаются сильно медленнее чем

1

электроны, то мы можем считать

$$\Psi_{total} = \psi_{electronic}\psi_{nucleic}$$
$$E_{total} = E_{electronic} + E_{nucleic}$$

1

Google: electron mass = $9.10938188 \times 10^{-31} kg$ proton mass = $1.67262158 \times 10^{-27} kg$

Одно-электронный атом

Рассматривая одно-электронный атом можно и учитывая, что система имеет сферическую симметрию и её можно представить волновую функцию в сферических координатах:

$$\Psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$$

Уравнение Шредингера разбивается на 3 уравнения с 1 или 2умя параметрами.

$$\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-\rho/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) Y_\ell^m(\vartheta,\varphi);$$

 $L^{2\ell+1}_{n-\ell-1}(\rho)$ - Обобщённый полином Лагерра степени n-l-1 ; $\rho=\frac{2r}{na_0}$ $Y^{\ell}_{\ell}(\vartheta,\varphi)$ - Сферическая гармоника ;

$$\Psi_{1,0,0}(1s) = \sqrt{\frac{Z^3}{\pi}} e^{-Zr}; \quad \Psi_{1,0,0}(2p_0) = \sqrt{\frac{Z^3}{2^5\pi}} Zr e^{-Zr/2} cos\theta$$

Многоэлектронный атом

Полное решение уравнение Шредингера для многоэлектронного атома затруднено, по ряду причин:

- N-body problem, суть вопроса, предсказать движение трёх и более тел на всём течении времени, если известны положение и скорости на текущий момент.
- Добавление четвёртого экспериментального квантового числа, спина, создаёт необходимость различать электроны.
- Появление r_{ij}⁻¹ в гамильтониане приводит к невозможности разделения перпеменных в сферических координатах.

Раздел:

Принцип Паули Для 1s можно построить матрицу:

$$\Psi = \frac{1}{\sqrt{2}} \begin{vmatrix} \chi_1(r_1)\sigma_1(\alpha) & \chi_1(r_2)\sigma_2(\alpha) \\ \chi_1(r_1)\sigma_1(\beta) & \chi_1(r_2)\sigma_2(\beta) \end{vmatrix}$$

или

$$= \frac{1}{\sqrt{2}} \chi_{1s}(r_1) \chi_{1s}(r_2) \begin{vmatrix} \sigma_1(\alpha) & \sigma_2(\alpha) \\ \sigma_1(\beta) & \sigma_2(\beta) \end{vmatrix}$$

Тогда мы переходим к N:

$$\Psi = \frac{1}{\sqrt{N}} \begin{pmatrix} \chi_1(1) & \chi_1(2) & \cdots & \chi_1(N) \\ \chi_2(1) & \chi_2(2) & \cdots & \chi_2(N) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_N(1) & \chi_N(2) & \cdots & \chi_N(N) \end{pmatrix}$$

это и есть **Определитель Слейтора**, орбитальное приближение волновой функции.

Метод самосогласованного поля, SCF

Межэлектронное отталкивание вычисляется как влияние общего (среднего) поля на данный электрон, и это зависит только от положения данного электрона.

Это приближение позволяет повторить разделение переменных в сферических координатах.

$$H_i = \frac{-\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{4\pi\epsilon_0 r_i} + \sum_{j\neq i}^N \left\langle \left(\frac{e^2}{4\pi\epsilon_0 r_{ij}}\right) \right\rangle_j$$

Эти уравнения называют одноэлектронными. Суть решения состоит в итеративном изменении параметров в функциях, до тех пор пока изменение энергии не станет незначительным.

Метод: Хартри-Фока:

Аппроксимация многоэлектронной волновой функции детерминантом Слейтора и решение методов самосогласованного поля приводят к методу Хартри-Фока, в котором точный гамильтониан заменён оператором Фока.

$$F_i = -\frac{1}{2}\nabla_i^2 - \frac{Z}{r_i} + \sum_j^N \left[\int \chi_j^*(x_j) \frac{1}{r_{ij}} \chi_j(x_j) \partial x_j - \int \chi_j^*(x_j) \frac{1}{r_{ij}} \chi_i(x_j) \partial x_j \right] = \epsilon_i \chi_i(x_i)$$

энергия электрона на орбитали χ_i

$$\epsilon_i = H_i + \sum_{j \neq i}^{N} [J_{ij} - K_{ij}]$$

Перейдём к молекулам:

Решать напрямую уравнения ХФ по отношению к молекулам, тяжело. Одной из успешных стратегий является введение базисных функций, т.е. волновая функция это комбинация одноэлектронных базисных функций и некоторых коэффициентов.

$$\psi_i = \sum_{\nu=1}^{K} c_{\nu i} \psi_{\nu}; \quad \frac{\partial E}{\partial c_{\nu i}} = 0$$

Подход Рутхана-Хола

Если молекулярная орбиталь это сумма функций с коэффициентами, то и надо их искать. Вспомним свойство операторов:

$$\psi_i = \sum_{\nu=1}^{K} c_{\nu i} \chi_{\nu}; \quad F \sum_{\nu=1}^{K} c_{\nu i} \chi_{\nu} = e_i \sum_{\nu=1}^{K} c_{\nu i} \chi_{\nu}$$

FC =SCE , где S это интеграл перекрывания , $S_{ij}=\langle b_i|b_j
angle=\int \dot{\chi_i}\chi_j\partial r$

$$C = \begin{vmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,k} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ c_{k,1} & c_{k,2} & \cdots & c_{k,k} \end{vmatrix} \quad E = \begin{vmatrix} e_1 & 0 & \cdots & 0 \\ 0 & e_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e_i \end{vmatrix}$$

Непосредственно процедура счёта

Словами:

- Посчитать интегралы для заполнения матрицы F
- Посчитать матрицу перекрывания S
- Диаганолизируем матрицу S
- Строим $S^{-1/2}$
- Угадываем или рассчитываем матрицу плотности Р
- Строим матрицу F заполняя значениями интегралов и P

• Строим
$$F' = S^{-1/2}FS^{-1/2}$$

- Решаем |F'- EI|=0 для поиска собственных значений Е и С' диаганолизации F'.
- Рассчитываем орбитальные коэффициенты $C=S^{-1/2}C^\prime$
- Считаем новую матрицу плотности из матрицы С
- Если плотность изменилась не значительно заканчиваем или продолжаем заполнять матрицу F

Итак ab initio:

Как мы видели выше, электронную структуру молекулы можно посчитать зная только основные физические константы, такие подходы и называются *ab initio*.

Базисные наборы

Часто орбитальные функции Слейтора аппроксимируют гауссиановскими функциями. В общем виде это:

 $x^a y^b z^c e^{-\alpha r^2}$

Важное свойство, сумму двух функций можно представить одним гауссианом, т.е.:

$$\phi_{\mu} = \sum_{i=1}^{L} d_{i\mu} \phi_i(\alpha_{i\mu})$$

Подробнее:

При выборе базисных функций надо выполнить всего два условия:

- Они должны иметь физический смысл.
- Интегралы должны быть сходимыми.

Обычная практика – это использовать функции типа гауссиана, потому что их легко считать.

 ϵ = -0.4665819 a.u. = 12.697 eV.

В реальности 13.606 eV. И ошибка 87.7 кДж/моль

Каждая молекулярная орбиталь разлагается в набор базисных функций, центрированных около ядра и обычно называемых атомными орбиталями.

Базисные наборы

Чем больше гауссианов описывают основные орбитали атомов тем ближе это описание к орбиталям Слейтора:

Естественно можно менять два параметра d и альфа, такие вычисления называют uncontracted. Но с точки зрения расчётов это не выгодно и часто используют contracted вычисления.

Гауссианы:

$$\begin{split} 1s &= Ne^{\alpha r^{2}}; \quad 2p_{x} = Ne^{\alpha r^{2}}x; \quad 2p_{y} = Ne^{\alpha r^{2}}y; \quad 2p_{z} = Ne^{\alpha r^{2}}z; \\ 3d_{xx} &= Ne^{\alpha r^{2}}x^{2}; \quad 3d_{xy} = Ne^{\alpha r^{2}}xy; \quad 3d_{xz} = Ne^{\alpha r^{2}}xz; \\ 3d_{yy} &= Ne^{\alpha r^{2}}y^{2}; \quad 3d_{yz} = Ne^{\alpha r^{2}}yz; \quad 3d_{zz} = Ne^{\alpha r^{2}}z^{2}; \\ 4f_{xxx} &= Ne^{\alpha r^{2}}x^{3}; \quad 4f_{xxy} = Ne^{\alpha r^{2}}x^{2}y; \quad 4f_{xxz} = Ne^{\alpha r^{2}}x^{2}z; \end{split}$$

И так далее.

Basis set сокращения:

Рассмотрим самую популярную схему сокращения информации об использованных базисах на примере серии программ Gaussian.

Minimal basis set: STO-nG, рассматриваются только орбитали атомов. Для элементов не содержащих d орбиталей STO-3G является абсолютным минимум. Плохо работает для несферических орбиталей и элементов в конце периода. Double zetta basis: Это линейная комбинация contracted и diffuse функций, которая даёт результат более точный чем STO. Коэффициенты считаются в ходе итераций, что позволяет работать с анизотропией рх,ру,рг. Split valence double zetta: Подход простой, валентные оболочки описываем большим количеством функций, чем соге электроны. 3-21G: 3 contracted гауссина описывают соге орбитали, внешние орбитали: 2 contracted и 1 дифузный. 3-21G, 4-21G, 6-31G.

Описания базисных наборов для программы GAUSSIAN:

Общий вид обозначений от Поупл и коллег: M-ijk..G

- М количество ограниченных гаусианов на один не валентный электрон
- Наличие двух и более букв после "-" означает, что валентные электроны описываются 2 и более функциями, каждая из которых состоит из линейной комбинации ij,k гауссианов
- * -Означает, что для тяжёлый атомов используются не только гауссианы характерные для конкретной орбитали, но и гауссианы следующей орбитали.

Например для углерода в **3-21*G**: у валентных электронов с 3 гауссианами прибавляется 6 гауссианов для d-орбиталей.

Описания базисных наборов для программы GAUSSIAN:

 ** то же самое, что и * ,но добавляются 3 гауссиана для р-орбиталей к гауссианам Н и Не.

 + Означает добавление дополнительных гауссианов тех же орбиталей, но с маленьким значением а. Этот шаг нужен для точного счёта систем где значительная электронная плотность удалена от ядра: электронные пары, анионы.

Итак:

Запись Бази- са	Количество гауссианов на орбиталь, для С	Применение
STO-3G	3	Большие системы
6-31G	6 - не валентные 3+1 - ва- лентные	Системы без поляризации
6-31*G	То же самое + 6 функций типа l+1	Системы с анизотропией заряда
6-31**G	см. выше + 3 р-функции для H и He	Водородная связь
6-31+G(2df)	Поляризационные: 2*6 d- функций + 7 f- функций (см *) Диффузных : 4	Нужно там, где важно точно рассчитать высокую плотность электронов
6-311++ G(3df,3pd)	Диффузные на все атомы и поляризационные на С: 3*6 d типа + 7 f типа H: 3*3 р типа + 1 d типа	Если всё, что было до это- го было не достаточно точ- ным.

Как не надо:

• 3-21++G(2df,2pd)

Только две функции на валентную орбиталь и 3 поляризационных набора функции с кучей гауссианов и диффузные наборы.

• 6-311+G(2df)

3 набора на валентную орбиталь, 3 поляризационных + диффузный набор для тяжёлых атомом и отсутствие поляризации для водорода?

Семи-эмпиричиские методы:

Задача: число двух электронных интегралов пропорционально М4, где М это количество или размерность атомного базиса. Сложно считать большие электронные системы.

- Основная идея: это уменьшить стоимость счёта за счёт двух электронных интегралов.
- Цель: описание либо больших систем, либо качественная оценка.

Основные приближения

- Рассматриваются только валентные электроны
- В молекулярных орбиталях учитываются АО с n, соответствующим высшим заселённым орбиталям
- Для двухэлектронных интегралов вводят приближение нулевого дифференциального перекрывания.

$$\chi_{\mu}(r)\chi_{\nu}(r)dr = 0, \mu \neq \nu$$

 Двухэлектронные интегралы зависят только от природы атомов, на которых центрированы орбитали χ_{μ} и χ_{ν} , и не зависят от конкретного вида орбиталей. Для обозначения среднего значения интегралов используют γ_{AB}

Приближение нулевого дифференциального перекрывания:

Основная идея: уменьшение количества интегралов, за счёт обнуления перекрывания некоторых орбиталей.

- Если два ядра далеко друг от друга то вероятно центрированные к ядрам функции не перекрываются.
- Основной результат с точки зрения уравнений это матрица обмена, S=1 Тогда уравнение Рутан-Хола будет выглядеть как: FC=CE
- Это приближение называют **ZDO**.

Приближение нулевого дифференциального перекрывания:

Это приближение слишком сильное для атомов объединённых в молекулу.

Существуют несколько модификаций:

- CNDO: идея применяется ко всем парам функций, не нулевыми оставались только кулоновские интегралы
- INDO, MINDO/х: учитывалось перекрывание всех функций центрированных на одном ядре.
- NDDO,MNDO: пренебрегается двухатомное перекрывание.

АМ1,РМ3: Улучшенные и современные варианты параметриризации MNDO. Программы: MOPAC, OPENMOPAC, AMPAC Раздел:

Источники параметризации

Метод	источник
CNDO/2	электронная плотность, электроны спарены
CNDO/S	спектры, электроны спарены
INDO	электронная плотность, электроны не спарены
INDO/S	спектры, электроны не спарены
ZNDO и ZNDO/S	тоже самое только для переходных элементов
MINDO/3	теплоты образования

Сравнение методов

Метод	Параметризуемое св-во Хорошо воспроизводимые св-ва		Плохо воспроизводимые св-ва
CNDO/2	Разности энергий между занятыми МО	Дипольные моменты, длины свя- зей, валентные углы, силовые кон- станты	Теплоты образования, потенциал ионизации, сродство к электрону, спектры, ре-акции
CNDO/S, INDO/S, ZINDO	Электронный спектр	Спектр	Теплоты образования, геометрия молекул, реакции
INDO	Спиновые плотности	Спиновые плотности, константы сверхтонкого взаимодействия, геометрия молекул	Теплоты образования, по- тенциалы ионизации, срод-ство к электрону, электрон-ные спектры
MINDO/3	Потенциал атоматомно- го взаимодействия	Теплоты образования, потенциа- лы ионизации, длины связей	Электронные спектры, во- дородная связь
MNDO	Теплоты образования	Теплоты образования,геометрия молекул	Электронные спектры, водород- ная связь
AM1	Теплоты образования	Теплоты образования,геометрия молекул	Электронные спектры
PM3	Теплоты образования, параметры межмоле- кулярного взаимодей- ствия	Теплоты образования, геометрия молекул, водородная связь, меж- молекулярные взаимодействия	Электронные спектры

Недостаток подхода Фока:

Метод Фока работает для систем близких к минимуму энергии. И не работает для возбуждённых систем, систем где наблюдается переход из одного стабильного состояния в другое стабильное и тд.

$$\Psi(1,2\ldots N) = \sum_{k_1} \sum_{k_2} \cdots \sum_{k_n} c(k_1\ldots K_N)\psi_{k1}(1)\psi_{k2}(2)\ldots \psi_{kN}(N)$$

$$\Psi(1,2\ldots N) = \sum_{K}^{\cup_{K}} \Psi_{K}(1\ldots N)$$

Это переводится в бесконечный ряд и в случае Фока мы учитываем только один член.

Недостаток подхода Фока:

Повысить точность счёта мы можем удачно учтя некоторые компоненты ряда. Значит надо минимизировать:

$$E = E_{real} - E_{HF}$$

Существуют три основных метода:

- Конфигурационного взаимодействия
- Метод самосогласованного поля
- Теория возмущение Меллера-Плессе

Метод конфигурационного взаимодействия

Мы нашли М спиновых орбиталей и N из них заняты электронами, именно их мы и используем для расчётов и подменим некоторые орбитали в найденной матрице новыми орбиталями. Т. е. создадим возбуждённую молекулу.

$$\Psi_{CI} = \sum_{K=0}^{\infty} C_K \Psi_K$$

Применяем подход Рутхана-Хола и находим коэффициенты С. Этот подход и является методом конфигурационного взаимодействия (CI). Тут необходимо заметить, что для каждого возбуждённого состояния надо свой детерминант Слейтора и считать орбитали заново.

Корреляция электронов

- Расчёт электронных взаимодействий по Хартри-Фоку игнорирует мгновенное кулоновское отталкивание, что приводит к ошибкам примерно в 1% общей энергии и это химически значимо.
- СІ конечно ограничен из-за сложности счёта, но обычно учёт однократно- и двухкратновозбужденные конфигураций позволяет покрыть 95% корреляционной энергии и понизить энергию системы на 200-300 кДж.
- Таким образом можно правильно описать диссоциацию N_2

Метод самосогласованного поля

Метод CI хорош когда предсказанные методом Фока орбитали достаточно близки к реальности. В методе самосогласованного поля предлагается варьировать не только коэффициенты C, но и форму орбиталей:

$$\Psi = \sum_{K=0}^{\infty} C_K \Psi_K(\delta \psi_1 \delta \psi_2 \dots \delta \psi_K)$$

Как и ранее мы не можем взять и использовать все комбинации, поэтому рассматривают только однократные и двухкратные состояния возбуждения.

Можно явно указать на какой уровень будет переходить возбуждаемый электрон.

- В DFT система описывается не волновой функцией, а функцией электронной плотности, включающей вклад всех электронов.
- Предполагается, что для любой реальной системы с потенциалом и плотностью существует такая воображаемая «невзаимодействующая» система (т.е. система, в которой отсутствует межэлектронное взаимодействие) с некоторым одноэлектронным потенциалом, электронная плотность которой (*p_s(r)*) совпадает с точной электронной плотностью реальной системы.

$$\rho(r) = \rho_s(r) = \sum_i^N |(\chi_i)|^2$$

Основная идея теоремы Хоэнберга-Кона:

Если в системе постоянное кол-во электронов, то их взаимное взаимодействие не зависит от внешнего потенциала. Тогда разбиваем энергию электронов на:

$$E = E^T + E^V + E^J E^{XC}$$

- Т кинетическая составляющая
- V потенциальная энергия (ядра)
- Јотталкивание электронов
- ХС обменно-корреляционная составляющая.

Хоненберг и Кохн показали, что E^{XC} зависит только от электронной плотности. Обычно E^{XC} разбивают: $E^{XC} = E^X + E^C$ Обе части зависят от плотности и их часто представляют как:

• локальные, которые зависят только от плотности

$$E^X_{LDA} = 3/2 \left(\frac{3}{4\pi}\right)^{1/3} \int \rho^{4/3} \partial^3 r$$

 Градиент-корректированные, они зависят от плотности и её градиента

Широко используемый сегодня функционал Bekke 88 года:

$$E_{Bekke88}^{X} = E_{LDA}^{X} - \gamma \int \frac{\rho^4 / 3x^2}{(1 + 6\gamma \sin h^{-1}x)} \partial^3 r; \quad x = \frac{|\nabla^2 \rho|}{\rho^{4/3}}$$

Появились корреляционные функционалы:

- Pedrew и Wang (1991)
- Vosko, Wilk и Nusair (1980)

И так далее. Часто применяются гибридные функционалы:

$$E_x^{HF} = \frac{1}{2} \sum_{i,j} \int \int \psi_i^*(r_1) \psi_j^*(r_1) \frac{1}{r_{12}} \psi_i(r_2) \psi_j(r_2) dr_1 dr_2$$

$$E_{xc}^{B3LYP} = E_{xc}^{LDA} + a_0(E_x^{HF} - E_x^{LDA}) + a_x(E_x^{GGA} - E_x^{LDA}) + a_c(E_c^{GGA} - E_c^{LDA})$$

где:

$$E_{XC}^{GGA}[n_{\uparrow},n_{\downarrow}] = \int \epsilon_{XC}(n_{\uparrow},n_{\downarrow},\vec{\nabla}n_{\uparrow},\vec{\nabla}n_{\downarrow})n(\vec{r})d^{3}r$$

Применение:

- Современные функционалы дают хорошую производительность при хорошей точности результатов.
- В расчётах квантовой химии одним из распространённых является виды обменного функционала BLYP, B3LYP.
- В DFT есть проблемы в описании Ван-дер-Ваальсовых взаимодействий или дисперсионного взаимодействия, т.е. стэкинг и *π* – *π* взаимодействия. Их в принципе можно компенсировать аналитическими потенциалами.
- «В целом, текущее состояние метода теории функционала плотности таково, что невозможно оценить погрешность расчёта, не сравнивая его результаты с другими подходами или с результатами экспериментов" ru.wikipedia.org